On Matrices, Automata, and Double Counting
نویسندگان
چکیده
Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variablesM, with the same constraint defined by a finitestate automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances.
منابع مشابه
On the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$
The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملCOMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS
The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...
متن کاملAlgorithms for computing preimages of cellular automata configurations
This paper investigates preimages (ancestors or past configurations) of specified configurations of one-dimensional cellular automata. Both counting and listing of preimages are discussed. The main graphical tools used are the de Bruijn diagram, and its extension the preimage network, which is created by concatenating de Bruijn diagrams. The counting of preimages is performed as multiplication ...
متن کاملCounting Preimages of Homogeneous Configurations in 1-Dimensional Cellular Automata
A cellular automaton (CA) is in a homogeneous configuration if every cell has the same state. The preimages of a configuration s are those configurations which evolve to s within a single time step. We present two methods of finding the total number of preimages for a given homogeneous configuration. The first is more intuitive, and gives a clear picture of how the number of preimages varies wi...
متن کامل